If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X+1.5=0
a = 1; b = 4; c = +1.5;
Δ = b2-4ac
Δ = 42-4·1·1.5
Δ = 10
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{10}}{2*1}=\frac{-4-\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{10}}{2*1}=\frac{-4+\sqrt{10}}{2} $
| 16-2t=t+94t | | 16x+0.25(12-x)=0.43(-12) | | x-(-0.07)=4.5 | | n+1/n^2+2n-3=n/n+3-1/n-1 | | 3y=36-6y | | t+1/2t-1=5/7 | | 35x+25=140x+175 | | 5y+3=5(4)-2(1) | | y/5+8=24 | | 12x-4=3x-2+6x | | 20x+60=40x+80 | | 100+x/5=-10x+-10x-1 | | -19+12x-10x=-18 | | 7.1x-4.7=62.3 | | (3x+8)^2=64 | | 28–x=3x | | .9(90)=20+16p | | 6x+1/2x+(-1/2)=-(1/2) | | 20+16p=81 | | 12x-34=8x+15 | | -5=n/3 | | (3x+8)2^=64 | | 2x+9+3x+3x=3x+1 | | 2x+9+3x+3x=2x+8 | | 2x+9+3x+3x=2x+7 | | 2x+9+3x+3x=2x+6 | | 2x+9+3x+3x=2x+5 | | 2x+9+3x+3x=2x+4 | | 2x+9+3x+3x=2x+3 | | 2x+9+3x+3x=2x+2 | | 2x+9+3x+3x=2x+1 | | 2x+9+3x+3x=1x+9 |